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Abstract 

Several algorithrns for solving eonstraint satisfaetion problems (CSP) have been proposed in reeent 
years. One of the most sueeessful approaehes involves using are eonsisteney as a pre-processing step 
followed by a form of baektraek search eallcd forward checking (FC). Effieient algorithms for are 
eonsisteney based on the notion of first support have been proposed reeently. We eonsider here this 
notion to be a natural eonsequenee of delayed evaluation of eOnstraint eheeks and apply it to FC. W e 
presenta speeifie algorithm, first-found-forward-checking (F3C). whieh takes advantage of ,_·,., delayed 
evaluation of eonstraints. We prove that F3C can be no worst than FC, and show substantial reduetions 
of constraint cheeks in praetice. F3C has been effectively used to solve eomplex CSP's in a musie 
composition system. 

Keywords: consrraints, constraint reasoning techníques, are consistency, backtrack sean:h, lazy evaluation. 

l. Introduction 

The use of simple forms of constraint reasoning has proved to be very effective in most practical applications. These 
techniques amount to a pre-processing step using are consistency schemes (Mackworth[77]) to reduce variable 
domains followed by a form of back track search calledfonvard checking (Haralick[80]). The standard formalism in 
constraint-based reasoning is a constraint graph defined by a set of variables (the nodes), a domain of values for each 
variable, anda set of constraints between the variables (the ares). Efficient are consistency algorithms (Mohr[86]) rest 
on the idea of computing for each value of a variable domain a set of supporting values. Supporting values are 
witnesses that constraints between variables hold. In Bessiere[94a,b] improvements in the time and space complexity 
of previous are consistency algorithms are shown to be obtained by computing the set of supports incrementally. 
With a judicious choice of data structures it can be efficiently guaranteed that a particular element of the set of 
supports is generated only when it is rcally needed. The principie involved in this strategy, called delayed evaluation, 
makes part of the standard trade of functional programming (Abelson[85]). We use it to improve the standard forward 
checking (FC) algorithm. 

FC attempts to reduce backtrack search by eliminating from the domain of sorne variables those values that are 
inconsistent with those already chosen for the other variables. It turns out that this process can also be seen as a set 
of supports comput.ation in such a way that thc idea of incrementallity applies. In fact, dclayed evaluation of data 
structures can be profitably employed in severa] aspccts of constr::lint reasoning for improving the time and/or space 
complexity of search algorithms. 

Kondrak[94] propases a characterization allowing to define theoretically an ordcring of FC and various others 
backtracking algorithms according to thcir efficiency. We propose in this papcr F3C (jirstfoundfonvard checking ), a 
modification of FC with the incremental computation of supports and show that it ranks better than FC in that 
charactcrization. 

§ This work has bccn partially supported by gmnt 12-51-14-041-95 from Colciencias-BID 
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The paper is organized as follows. Section 2 contains sorne preliminary definitions and properties on constraints 
networks. Section 3 describes F3C, section 4 proves the improvement over FC and gives experimental results, 
section 5 discusses the use of F3C and delayed evaluation in a system for computer aided composition. and section 6 

contains conclusions. 

2. Background 

A constraint network (CN) is a triple < V,D,e > where V= {XpX2 , •.• ,x,} is a set of variables, D is a set of 
values (the domain) and e is a set of constraints. We assume variables are identified by indexes in a set X where 
index i E X identifies variable x, E V. A given CN =< X,D,C > is assumed throughout the paper. A domain 
assignment is a function o: X~ P(D). O(i) denotes the domain of values for variable X¡. Given 
assignments 01,02, we say 01 e 02 when for all i E X, 81 (i) ~ 82 (i). Constraints are subsets of the products of 
their domains (that is, R(i¡.i2,. .. i,.) ~ o(il)x ... xo(iJ ). We say that values V¡¡ E O(i¡), ... , V¡u E o(iu), satisfy 
constraint Ru

1
.i

2 
••• ,i. . .) when (v¡1 , ••• , vi,.) E Ru1 .~, •• ,i,). Given a domain assignment O, a value assignment set (V AS) 

is a function S:I ~X~ D such that S(i) E o(i). A V AS represents the instanciation of variables with values in 
their corresponding domains. A V AS S is consisten! if for each constraint involving variables instanciated by S 
the corresponding assignments satisfy the constraint. A solution of a CN is a consistent V AS instanciating all 

variables. 

A constraint network is binary when all its constraints are binary relations. A binary network < V,D,e > is 
usually represented as a directed graph eG =<N, E> with N= V and (x¡,Xj) E E iff Ru.il E C. Are 
consistency techniques are mostly used in binary constraint networks. The notion of suppor{ is fundamental in these 
techniques (Mohr[86]). Given a domain assignment O, for each constraint RCi.il we say that value Z E O(j) is a 
support for value V E O(i) if (v,z) E R(i,j)· A value V¡ is viable if for every j E X such that R(í,j) E C, V¡ has 
support in o(j). o(i) is viable when all of its elements are viable. A domain D in a network is are consistent 

when for al! i E X , o (i) is viable. 

Extending the notion of support to a V AS will allow us to neatly characterize backtrack search algorithms. We 
consider only binary networks to simplify notation, but the definitions can easily be extended to n-ary constraints. 
Having a constraint RCi.il E e and given a V AS S such that j e: dom(S) anda pair (i, V¡) E S, V¡ is a support 
for S if ( v ¿, v j) E R(i ,j) . A set A is a support for S if each element of A is a support for S. 

Definition (viability and S-consistency). 
A V AS S is viable in a domain assignment 8 if for each i E dom(S) and for al! variables j E X such that 
j É dom(S) and Rci.il E e, S has a support in o(j). We assume VAS 0 is viable. A domain assignment 8 is 
S-consistent if for all j E X , o(j) is a support for S. A dornain assignment O is maximal S-consistent if it is 
S-consistent and for all S-consistent o', o'~ 8 .Givcn a viable VAS S such that j e: dom(S) and v j E 8(}) 
a support for S, the V AS S' = S U { (j, V j)} is called an extension o[ S in 8. 

Severa! backtrack scarch algorithms, including FC, work by cxtcnding consistent viable V AS's. Extending a V AS 

opens up at least three choice possibilities (wc assumc a given 8 ): 
l. An clement must be chosen from thc set of candidate variables indexes I(S) = [j (2' dom(S)Ij E X}. 
2. A support in the domain of the choscn variable must be selccted from the set 

(5. (S)= [V E o(j)l V is a support for S}. 
3. W'hen no extension is possible (i.e. S is not viable), a previously extended V AS S' e S must be 

reconsidcred. 

Diffcrcnt backtrack search algorithms c::m be identified by the way in which thcy handle these sets. Chronological 
backtracking (BT, Bitner[75]) assumes predefined static orderings both on variables and on domains. The candidates 
chosen in I (S) and in ojCS) are the first elcments according to their respective orderings. Similar! y, when S is 
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not viable, a backtrack V AS S'= S- {(j, Vj )} is selected, where x j is the last variable in the ordering among 
those instancíated by S. Forward Checking performs essentially the same choices as BT does. The difference lies in 
that FC computes for a gíven V AS S all sets O"j (S), for every j E I (S). This allows to find out earlier whether 
S is viable o.r not and, additionally, reduces the sets of values to inspect for supports in subsequent extensions of S. 

FCforward(S) 
if 1 SI= n then output(S) 1 *Sisa solution * 1 

FCback(S) 
else repeatfor j E I(S) such that Rck,j) E C 

. Cíj(S) f- computeSupports(S, Cíj (S')) 
until Cí; (S)= 0 

if3j E I(S) such that Cí; (S)= 0 then FCback(S) 
elsej f- first(I(S)) 

vi f- first(Cí;(S)) 
Cíj(S) f- Cí/S)- (vi} 
FCfonvard(S u[(}, vj)}) 

FCback(S) 
if S= 0 then return() 
el se (j, v;) f- last(S) 

S'f--5-[(J,v;)} 
if Cí; (S')= 0 then FCback(S') 
else v: f- first(Cí;(S')) 

cÍ;(S') f- Cíi (S')- [ vj} 
FCfonvard(S' u[(}, v;)}) 

Figure 1: FC algorithm 

FC (sce Figure 1) computes a sequence of viable VAS's and corresponding sequence of domain assignments 
maintaining the following property: 

Property (FC invariant). 

Let So = 0 e S¡ c ... e S k be the sequence of VAS's computed by FC when extending So to S k and let 
Oo, 01, ... , O k be domain assignmcnts such that for all j E X, 8¡ (j) = Cíi (S¡). For all i = 1, ... , k -l the 
following holds: 

1. S¡ is viable. S k is consistent. 
2. O¡ is ma:'\imal S¡-consistent. 
3. o¡_1 ~ o¡ 

FC thus computes consistent viable VAS's by maintaining maximal S -consistent domain assignments. This extra 
reduction of domains is both simple and vcry effcctive (Nadel[85]). In an efficient implementation ofFC, keeping all 

sets O"j ( S'J for every S can be avoidcd by a judicious choice of data structures but wc do not consider these details 
here. In FC computeSupports insures maximal S -consistency of domain assignments (we assume Cí(0) = 80 ). 

This is a costly operation. It takcs O(d) time for d the size of a variable domain. compweSupports is invoked for 

each constro.int involving thc last variable instanciated in the currcnt VAS. This gives an O(ed) computation, 
where e =1 Cl. It turns out that the necessary information provided by this computation (i.e. the viability of a VAS) 

co.n be obtained more efficiently with dclaycd cxploration of the above mentioned sets. This optimization is in the 
spirit of tho.t proposcd by Bessiere[94a] for are consistency computations. 

3. First Found Forward Checking (F3C). 

Thc new algorithm is based on thc notion of delayed-evaluation structure (DES) which is esscntially a stream in the 

sense of Abelson[85]. A DES can be seen as a sequcncc having an explicit rcpresentation of its first element andan 
99 



implicit representation of the other elements (it can thus be infinite). DES's are quite convenient to efficiently 
represent large data structures. We considera DES as a data type with two operations: first:DES --7 element, 
returns the frrst element of a DES. This operation is assumed to take constant time. move:DES --7 DES retums 
the DES resulting after discarding its first element. We use a DES to represent domain assignments. The key idea is 
to remark that the three properties of FC (see above) can be maintained without explicitly computing domain 

assignments. We only keep carefully chosen witnesses of each O(j). 

Definition (Witness set) 
A witness set of a domain assignmen! O is a function al: X~ D u {.l} (where ..Le D) such that for al! 
j E dom(O) either w5 (j) E S(j) or w (J) =..L. We extend the notion of S -consistency to witness sets. Given a 
VAS S, a witness set of an S -consistent domain assignment Os, written mff, is such that wff (i) == S(i), for 

i E dom(S). 

Given an ordering relation ::;X on X, a witness set can be expressed as a tuple (wf(i1 ), •.• ,wf(in)) where 
ik-J ::;x ik> 1 <k:::; n. We also assume an ordering relation, '5:D, on Du (.l} such that for all dE D, ..L :::;D d, 
and we order witness tu pies lexicographically in the obvious way. For an S -consistent domain assignment Os , a 
use fu! S -consistent witness set of Os is roff (j) == fir st( 8 s (j)), where first denotes the ·first element of each set 
in the domain assignment (we define first(0) = ..L ). Given a V AS S, F3C uses wff both to assert the viability of 
S and to provide a delayed representation of Os. As elements of Os are expanded they are inserted in a separate 
structure a{ S). The following properties establish how this is done (when no confusion arises we drop superscripts 

for witness sets). 

Proposition (F3C invariant) 
Let So c. .. Sk eS be the sequence of consistent VAS's and let Ws0 , ... ,Wsk and cr(So), ... ,cr(Sk) be 
corresponding witness tu pies and support sets computed by F3C in extending So to S. Let 
Os0 ¿ Os1 ¿ ... :::> Os k be domain assignments such that Os¡ is maximal Srconsistent. The following holds: 

1. cr( S¡) e o S¡ 
2. ms. is a wimess set (tuple) of cr(S¡) and ms. :::::: ms .. 

¡ ¡-1 ¡ 

3. '\lj E X: ms, (j) == max[ o) S;)]> .l, where max[A] denotes the maximum element of set A in the pre-defined 

ordering (we define max(0] == .l). 
4. If dE Os (j) is such that de crj (S¡) 1\ d < Ws. (j) then either every extension S' of S¡ such that 

S' (j) = d \s not viable or else it has been output as ~ solution. 

5. S(k + 1) = first( crk+l (S k)) is a support of S. 

Property 1 says that F3C maintains witnesses of the viabílity of computed V AS's. Properties 2 and 3 assert that 
witness sets act as lexicographically moved markers of thc known portion of delayed-evaluated consistent domain 
assignments. Property 4 guarantees that no viable element less than a witness is misscd by an explicit part of a 
domain assignment. Property 5 asserts that extensions are consisten t. ' 

As mentioned abo ve, domain assígnments are represented ']azily". Og is the initial DES. Given a V AS S, the S
consistent domain assígnment is represcnted by an explicit and an implicit part. The explícit part cr(S) contains 
elements of 00 airead y known to be S -consistent. The implicit part Os ~ 80 is a DES of cmrcntly untested 
potential supports for S. Both structures are related by 8 s (j) == 0 v successorf'ZJ ( Ws (j)) == first( 8 s (j)), where 
successorf (x) is the clement of o(J) following X in the domain ordering. Procedure nextSupport (see figure 3) 
updates these structures when a viable V AS S is extended ( F3CF orward) or when non viabílity has been proved 
anda different extension of an S' e S V AS must be tried ( F3CBack), thus checking viability of consistent 

extensions. The following specifícation captures this bchaviour of nextSupport more precisely. 
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Proposition ( nextSupport postcondition) 

Let a ·(S), ws(J), 8s(J) be the input and aj(S), w's(J), 8's(j) the computed structures in an ínvocation of 
nex:iuppoft. Let So c. .. Si c. .. S be the sequence of extensions leading to S. The following properties hold: 

l. For all Si, m's1 (j) = last( aj (S¡)). · 
2. Por all S; e S, the set {vE a) (S; )1 m5, (j) :s; v < m's1 (j)} is not a support for S. 
3. If there is no v > first( a/S)) in 80 (j) su eh that v ís support for S then a} (S)= 0. 
4. Either a¡(S)*0 and then aj(S)=a¡(S)-{first(CY¡(S))), or a¡(S)=0 and then we have 

{vl.first(os(j))<v<first(o,S(j))/\vissupportofS}=0, m's(j) is the first support of S in os(}), and 

aj(S) = { ._)5 ())}. 

F 3Cforward(S) 
1 ifiSI=nthenoutput(S) /*Sisasolution */ 
2 F 3Cback(S) 
3 use repeat forjE I(S) such that R(k,j) E C 
4 m5 (J),a¡(S) f-- nextSupport(S,j) 
s until m s (j) = l_ 
6 if3j E I(S) such that m5 (j) = l_ then F 3Cback(S) 
7 else j f-- first(I(S)) 
s F3Cforward(S u ((j,.first(CY/S)))}) 
F3Cback(S) 
1 if S = 0 then done() 
2 el se (j, v ¡) f-- last( S) 
3 S'f--S-{(j,v1)} 
4 ms, (j), CY¡(S') f-- nextSupport(S',j) 
5 if ms,(i) = l_ then F 3Cback(S') 
6 else F 3Cforward(S' u {(j,first( a¡ (S')))}) 

Figure 2. F3C algorithm 

nextSupport(j, S): returns m(j), a¡ 
v f-- moveToNext(a1(S)) 
found f-- false 
while v * l_ 1\ -,found do 

isSupport f-- true . 
for (i,x) E S, i =Oto ISI-1 while isSupport do 

ifv > msi (j) then if (x, v) E R(i,j) 
then a 1(S¡) f-- a¡(S;) u {v} 

ms (j) f-- v 
else isSupport f-- false 

else skip 
ifisSupport then found f-- true else v f-- moveToNext(a¡(S)) 

return (CY¡(S),m 5 (j))) 

Figure 3. Procedure nextSupport 

moveToNext( a¡ (S)): returns v 
v f-- first(CY¡(S)) 
ifv = l_ then v f-- first(osCJ)) 

if v * l_ then os(}) f-- move( os (j)) 
else O'¡(S) f-- CY¡(S)- {v} 

return (v) 

Figure -+. Procedure moveToNext. 
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Procedure moveToNext (see figure 4) performs a move operation on the DES representing the appropriate domain 

assignment, when this is needed. 

We di~cuss next sorne properties supporting the correctness of F3C. We only sketch proofs. We saya VAS S is 
considered in step 1 of F3Cforward or step 4 of F3Cback (see Figure 2). A V AS S' e S is said visited . By 
the properties mentioned before, a visited V AS is viable anda considered V AS is consistent. 

Lemma l. 
Let So c ... c S k be a sequence of VAS's such that S k is the currently considered VAS. If O"k+1 (S k) 'i= 0 then 
Sk is viable, has been visited, and the extension S" u {(k+ l,first(aú1 (S~c)))} has been considered. 

proof: Only an invocation of nextSupport(k+l,S~c) can add values to ak+I(S"). This cannot have been in the 
current invocation of F3Cjorward or F3Cback since Sk is currently considered, so there must has been a 
previous consideration of S k. Only F3Cback reconsiders V AS's, so step 4 of F3Cback is being performed. 

But then S" =S- {(k+ l,first(a"+I (S~c)))}, S is consistent and S k is viable 0. 

Lemma 2. 
If S is visited by F3C then all consistent direct extensions are considered. 
proof: Let So c ... Sk-1 e S be the extensions computed by F3C such that Sk-1 is viable (visited), S is 
consistent and not visíted by F3C. There are three reasons for not considering S: 
l. v = S(k)is nota support for Sk_1. But then S cannot be consistent. 
2. Extension (k,v)ES is a support but v<first(O"k(Sk-1)). Since vis a support, the only reason 

v é O"k(Sk-1) is that nextSupport(k.Sk-1) moved passed it. But then O"k(Sk-l) :;é 0 and by lemma 1 
extension Sk-I U {(k, v)} =S would have been considered before, contradicting the assurnption. 

3. Extension (k, v) E S is a support but v >ros (k). F3C can only termínate in a recursive invocation of 
l-1 

F3Cbacksince F3Cforward never changes a VAS before invokíng F3Cback and the empty V AS is viable 
by definition. Since S"_1 is visited, a call F3Cback(Sk-I) from F3Cback must be performed. But this can 
only happen when nextSupport(k,S"_1) returns ms (k)= l., which means that Os (k) is the empty DES. 

k-1 k-l 
But then, by the property linking a DES and its explicit part, nextSupport must have moved passed every 
support for Sk-1 in Osk_1 (k). By lemma 1, S would have been considered, which is a contradiction O. 

Corollary. 
F3C visits all (and only) viable VAS's. 
proof: follows from the lemmas abo ve. 

Theorem l. 
F3C finds all (and only) solutions. 
proof: (::::;.) Let S be a solution. Then S is a consistent extension of an S', which must be viable. By lemma I, 

S is considered. Since jSj = n, it is output as a solution by F3Cforn·ard. ( ~) Let S be a V AS output by 
F3Cjorn·ard. Let So c ... Sk-I e S be the extensions Ieading to S. Then 1 SI= n, by the corollary Sk_1 is 
viable and by lemma 1 S is consistent. Thus S is a solution O. 

4. Efficiency of F3C. 

The characterization proposed in Kondrak[94] considers VAS's as nodes in a tree. This tree represents the search 
space of a backtrack algorithm. Using as metrics the number of tree nodes (i.e. V AS's) visited and the number of 
constraínts checked on each visit, Kondrak[94] is able to define a precise hierarchy for the efficiency of several 
backtrack search algorithms: Chronological Backtrack (BT), backjumping (BJ), back marking (BM), cont1ict-directed 
back jumping (CBJ), forward checking (FC), really fulllook-ahead (RFL) and sorne hybrids (e.g. Backmarking + 
Backjumping, BMJ). Given algorithms P and Q, P appears below Q (i.e. it is bettcr) in the hierarchy if Q visits 
all V AS's that P visits and P pcrforms less constraint checks than Q in each visitcd V AS. F3C can be placed 
below FC in this hierarchy. In Kondrak[94] it is shown th.at FC visits a node (considers a VAS) iff its father (the 
V AS it is an extcnsion of) is consistent with all the variables (is viable). The next theorem follows immediately. 
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Theorem 2. 
FC considers ap VAS's that F3C considers. 

Theorem 3. 
FC performs on each considered V AS at least as much constraint checks as F3C does. 
proof: Let So c. .. Sk-1 e S be the sequence of extensions computed by F3C, with Sk-l viable and S being 
considered. Let ( v, w) ~ R(i,j) , i ~ k < j ~ n be a constraint checked in an invocation of nextSupport(j, S). 
Constraint R(i,i) is checked only once in a given invocation since w is eliminated from ai (S¡) If i =k,. then 
w E Os(}), ' potential support of V, is being tested. Since FC tests all potential supports in (the explicit set) 
8s(j), it must have c';ecke~ R(i,i)· If i <k a potential support of a previou~ly considered VAS Si is tested. We 
must also ha ve w > (J) s. U), so ( v, w) cannot ha ve been checked befo re m the current sequence of extensíons 

1 
leading to S. Also, since nextSupport considers constraints in the underlying variable ordering, w must be a 
supportfor all Si e S¡. This mcns w would be a candidate for FC's ai (S¡) if FC considered S¡. By theorern 2, 
this must be the case. But then FC must have also checked constraint R(i,i)• which proves the theorern. We rnay 
furthernoticethatFCwouldhavealways checked (v,w), while in F3C this only happens if w> Ws.(J). Thus 

F3C rnight perform less constraint checks than FC O . 1 

Figure 5 shows F3C in the hierarchy of Kondrak[94]. RFL was added to this hierarchy in Valencia[95]. Dashed lines 
express our conjecture regarding F3C+CBJ. 

In our experiments we have found that the performance of F3C is quite stable, scoring consistently better than the 
other algorithms in most of our tests. We tested F3C on two bench mark problems and on a set of randomly 
generated problerns. As benchmarks we used the puzzle problem ZEBRA anda combinatoria! theory problem (CfP), 
both described in Vanhent[89]. For the randomly generated problems a set of parameters are defined to control 
different aspects of the constraint graph (Sabin[94], Bessiere[93]). O~ pe~ 1 denotes the probability of having a 
constraint between a pair of variables, O ~ pu ~ 1 is the probability that sorne constraint hold between a given pair of 

values, d is the domain size and n is the nurriber of variables. 

IJT FC ~Fl BT 

H~ 1\ l fiJ FC-tCBJ F3C 
1 , 

/H~ 
1 1 

~ 
1 t 
' ~ 

: 1 
1 • 
1/ 

BMJ2 CBJ nc~caJ F3C-FC CBJ 

&~ ~ 
CBJ•BI12. 

~FL 

Figure 5. Algorithm hierarchy based on constraint checks (left) and considered V AS's (right) . 

For our experiments we used an implementation of F3C with an explicit representation of 8s (i.e. no DES's) 
anda matrix of markers pointing to witnesses of each 85 (}). We also avoided creating copies of domains by 
maintaining explicitly the set of delcted (i.e. non supports) values in each domain and used it to reinstall them as 
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needed on backtracking. Results are shown in tables 1-3. We analyzed FC and F3C, both using the min-domains 
heuristic, i.e. the variable having the smallest current domain is the one selected next for extension. Results of these 
tests are given in tables 4 and 5. 

ALGORITHM Constraint Numberof 
Checks VAS's 

considered 
CBJ 939 127 
F3C 1037 144 
BMJ 1227 267 
FC 1329 144 
BJ 2066 267 
BT 2530 339 

Table l. Constraint checks and V AS's considered for the problem ZEBRA . 

ALGORITHM Constraint Checks Number of V AS 's 
considered 

F3C 124858 8626 
BMJ 127015 14582 
FC 164557 8626 
CBJ 620824 14487 
BJ 624377 14582 
BT 6668616 15733 

Table 2. Constraint checks and V AS's considered, for CTP 

Pu FC F3C CBJ BJ BMJ BT 
5 30 28 50 583 583 708 

10 48 36 272 351 264 771 
15 65 46 48 52 47 52 
20 131 97 195 267 188 967 
25 103 67 232 311 242 2420 
30 228 150 482 565 271 1245 
35 284 188 293 1401 359 4608 
40 991 604 3788 10548 3590 24960 
45 860 515 3808 8230 3653 11757 
50 2093 1418 4722 13477 4195 27158 
55 3211 2169 15481 32635 5972 176578 
60 8461 5667 36540 132939 29623 544724 
65 15067 9573 38846 133502 26479 345203 
70 503 357 620 2396 577 10542 
75 808 716 557 6277 712 15108 
80 190 106 436 436 209 1071 

Total 33073 21737 106370 343970 76964 1167872 
Table 3. Random problems with pe = 30%, n = 20, d = 5 and O. 05 ~ pu ~O. 8. 

Pu FqMindom) F3 C (1vlindom ¿ FC/F3C 
5 3849 2050 0.53 

10 6068.7 3386 0.56 
15 10696.13 4912.5 0.46 
20 15804.4 7498.6 0.47 
25 35814.7 17536.2 0.49 
30 44856.9 25409.8 0.57 
35 103653 67919.1 0.66 
40 194373.5 119939.5 0.62 
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45 1478361.3 1147081.6 0.78 
50 3297041 3235978.3 0.98 
55 13085 2658 0.20 
60 3973.1 1627.2 0.41 
65 1446.2 876.6 0.61 

70 1590 530.6 0.33 
75 1658.8 350 0.21 

80 1851 385 0.21 

85 2015.6 156 0.08 
90 2526 160 0.06 
95 2495.6 121.8 0.05 

100 2940 98 0.03 

Total 5224099.93 4638674.8 

Table 4. Constraint checks for FC and F3C with min-domain heuristícs. Parameters are: n = 20 , d = 30, 
pe= 0.5. 

It can be seen in the tab1es that F3C outperforms FC both with or without the min-domaíns heuristics. An increase 
of about 12% in the first case and 25% in the second is observed. If we ignore the instances laying just at the border 
between under-constraint and over- constraint problems ( pu "" O. 5), the performance in crease with min-domains is 

about40%. 

5. F3C in a musical cornposition systern. 

F3C has been used to improve the constraint engine of a visual environment for computer aided musical 
compositíon, called Niobé (Assayag[93]). The musical domain is particularly demanding for constraint satisfaction 
techniques: The number of variables and the domaín size tend to be very large (e.g. a variable might denote a chord in 
a sectíon of a piece), progressions from under-constraint to over-constraint subsequences might be precisely what the 
composer looks for and constraints are usually considered to have different degrees of importance. Niobé applies 
different constraint satisfactíon techniques. Solution searching used originally FC with an embedded technique for 
handling soft constraínts (Schiex[92] ). Delayed evaluation is extensively used in Niobé : Domaíns are represented 
implicitly, and all pruning is performed "lazily". In fact, the lazily evaluated A C -5 in Niobé can be 
straíghtforwardly adapted to behave as AC-6 (Bessiere[94]). 

6. Conclusions. 

We presented F3C, a new backtrack search algorithm based on the notion ofjirst support defincd in Bessiere[94] for 
are consistency computatíon. We described the key properties of FC and argued how they can be maintained more 
efficiently by keeping only a witness from each domain. We showed how this concept can be formally adapted to FC 
by representing domains as streams and considering delayed constraint filtering. This characterization allowed us to 
place F3C in the hierarchy proposed in Kondrak[94] and thus to prove the improvement of F3C over FC. In our 
experiments the improvement over FC was clearly demonstrated in terms of a smaller number of constraint checks, 
both with or without the min-domains heuristics. Comparison of F3C (without min-domains) with several other 
well known backtrack search algorithms shows that F3C consistently ranks first in most cases. We described a 
system for music compositíon in which the idea of delayed evaluation is profitably used in severa! aspects of the 
underlying constraínt reasoning engine. 
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