
Improving For,vard Checking
Evaluation§

\Vith Delayed

Camilo Rueda and Frank D. Valencia
Grupo AVISPA,

Universidad Javeriana de Cali
Research Tearn AVISPA

Pontificia Universidad J averiana Cali
Calle 18 Num. 118-250 Via a Pance

Cali, Colombia
Phone:(57) 2-5552175
Fax:(570 2-5552823

[crueda,fvalenci]@ atlas. uni valle.edu.co

Abstract

Several algorithrns for solving eonstraint satisfaetion problems (CSP) have been proposed in reeent
years. One of the most sueeessful approaehes involves using are eonsisteney as a pre-processing step
followed by a form of baektraek search eallcd forward checking (FC). Effieient algorithms for are
eonsisteney based on the notion of first support have been proposed reeently. We eonsider here this
notion to be a natural eonsequenee of delayed evaluation of eOnstraint eheeks and apply it to FC. W e
presenta speeifie algorithm, first-found-forward-checking (F3C). whieh takes advantage of ,_·,., delayed
evaluation of eonstraints. We prove that F3C can be no worst than FC, and show substantial reduetions
of constraint cheeks in praetice. F3C has been effectively used to solve eomplex CSP's in a musie
composition system.

Keywords: consrraints, constraint reasoning techníques, are consistency, backtrack sean:h, lazy evaluation.

l. Introduction

The use of simple forms of constraint reasoning has proved to be very effective in most practical applications. These
techniques amount to a pre-processing step using are consistency schemes (Mackworth[77]) to reduce variable
domains followed by a form of back track search calledfonvard checking (Haralick[80]). The standard formalism in
constraint-based reasoning is a constraint graph defined by a set of variables (the nodes), a domain of values for each
variable, anda set of constraints between the variables (the ares). Efficient are consistency algorithms (Mohr[86]) rest
on the idea of computing for each value of a variable domain a set of supporting values. Supporting values are
witnesses that constraints between variables hold. In Bessiere[94a,b] improvements in the time and space complexity
of previous are consistency algorithms are shown to be obtained by computing the set of supports incrementally.
With a judicious choice of data structures it can be efficiently guaranteed that a particular element of the set of
supports is generated only when it is rcally needed. The principie involved in this strategy, called delayed evaluation,
makes part of the standard trade of functional programming (Abelson[85]). We use it to improve the standard forward
checking (FC) algorithm.

FC attempts to reduce backtrack search by eliminating from the domain of sorne variables those values that are
inconsistent with those already chosen for the other variables. It turns out that this process can also be seen as a set
of supports comput.ation in such a way that thc idea of incrementallity applies. In fact, dclayed evaluation of data
structures can be profitably employed in severa] aspccts of constr::lint reasoning for improving the time and/or space
complexity of search algorithms.

Kondrak[94] propases a characterization allowing to define theoretically an ordcring of FC and various others
backtracking algorithms according to thcir efficiency. We propose in this papcr F3C (jirstfoundfonvard checking), a
modification of FC with the incremental computation of supports and show that it ranks better than FC in that
charactcrization.

§ This work has bccn partially supported by gmnt 12-51-14-041-95 from Colciencias-BID
97

The paper is organized as follows. Section 2 contains sorne preliminary definitions and properties on constraints
networks. Section 3 describes F3C, section 4 proves the improvement over FC and gives experimental results,
section 5 discusses the use of F3C and delayed evaluation in a system for computer aided composition. and section 6

contains conclusions.

2. Background

A constraint network (CN) is a triple < V,D,e > where V= {XpX2 , •.• ,x,} is a set of variables, D is a set of
values (the domain) and e is a set of constraints. We assume variables are identified by indexes in a set X where
index i E X identifies variable x, E V. A given CN =< X,D,C > is assumed throughout the paper. A domain
assignment is a function o: X~ P(D). O(i) denotes the domain of values for variable X¡. Given
assignments 01,02, we say 01 e 02 when for all i E X, 81 (i) ~ 82 (i). Constraints are subsets of the products of
their domains (that is, R(i¡.i2,. .. i,.) ~ o(il)x ... xo(iJ). We say that values V¡¡ E O(i¡), ... , V¡u E o(iu), satisfy
constraint Ru

1
.i

2
••• ,i. . .) when (v¡1 , ••• , vi,.) E Ru1 .~, •• ,i,). Given a domain assignment O, a value assignment set (V AS)

is a function S:I ~X~ D such that S(i) E o(i). A V AS represents the instanciation of variables with values in
their corresponding domains. A V AS S is consisten! if for each constraint involving variables instanciated by S
the corresponding assignments satisfy the constraint. A solution of a CN is a consistent V AS instanciating all

variables.

A constraint network is binary when all its constraints are binary relations. A binary network < V,D,e > is
usually represented as a directed graph eG =<N, E> with N= V and (x¡,Xj) E E iff Ru.il E C. Are
consistency techniques are mostly used in binary constraint networks. The notion of suppor{ is fundamental in these
techniques (Mohr[86]). Given a domain assignment O, for each constraint RCi.il we say that value Z E O(j) is a
support for value V E O(i) if (v,z) E R(i,j)· A value V¡ is viable if for every j E X such that R(í,j) E C, V¡ has
support in o(j). o(i) is viable when all of its elements are viable. A domain D in a network is are consistent

when for al! i E X , o (i) is viable.

Extending the notion of support to a V AS will allow us to neatly characterize backtrack search algorithms. We
consider only binary networks to simplify notation, but the definitions can easily be extended to n-ary constraints.
Having a constraint RCi.il E e and given a V AS S such that j e: dom(S) anda pair (i, V¡) E S, V¡ is a support
for S if (v ¿, v j) E R(i ,j) . A set A is a support for S if each element of A is a support for S.

Definition (viability and S-consistency).
A V AS S is viable in a domain assignment 8 if for each i E dom(S) and for al! variables j E X such that
j É dom(S) and Rci.il E e, S has a support in o(j). We assume VAS 0 is viable. A domain assignment 8 is
S-consistent if for all j E X , o(j) is a support for S. A dornain assignment O is maximal S-consistent if it is
S-consistent and for all S-consistent o', o'~ 8 .Givcn a viable VAS S such that j e: dom(S) and v j E 8(})
a support for S, the V AS S' = S U { (j, V j)} is called an extension o[S in 8.

Severa! backtrack scarch algorithms, including FC, work by cxtcnding consistent viable V AS's. Extending a V AS

opens up at least three choice possibilities (wc assumc a given 8):
l. An clement must be chosen from thc set of candidate variables indexes I(S) = [j (2' dom(S)Ij E X}.
2. A support in the domain of the choscn variable must be selccted from the set

(5. (S)= [V E o(j)l V is a support for S}.
3. W'hen no extension is possible (i.e. S is not viable), a previously extended V AS S' e S must be

reconsidcred.

Diffcrcnt backtrack search algorithms c::m be identified by the way in which thcy handle these sets. Chronological
backtracking (BT, Bitner[75]) assumes predefined static orderings both on variables and on domains. The candidates
chosen in I (S) and in ojCS) are the first elcments according to their respective orderings. Similar! y, when S is

98

not viable, a backtrack V AS S'= S- {(j, Vj)} is selected, where x j is the last variable in the ordering among
those instancíated by S. Forward Checking performs essentially the same choices as BT does. The difference lies in
that FC computes for a gíven V AS S all sets O"j (S), for every j E I (S). This allows to find out earlier whether
S is viable o.r not and, additionally, reduces the sets of values to inspect for supports in subsequent extensions of S.

FCforward(S)
if 1 SI= n then output(S) 1 *Sisa solution * 1

FCback(S)
else repeatfor j E I(S) such that Rck,j) E C

. Cíj(S) f- computeSupports(S, Cíj (S'))
until Cí; (S)= 0

if3j E I(S) such that Cí; (S)= 0 then FCback(S)
elsej f- first(I(S))

vi f- first(Cí;(S))
Cíj(S) f- Cí/S)- (vi}
FCfonvard(S u[(}, vj)})

FCback(S)
if S= 0 then return()
el se (j, v;) f- last(S)

S'f--5-[(J,v;)}
if Cí; (S')= 0 then FCback(S')
else v: f- first(Cí;(S'))

cÍ;(S') f- Cíi (S')- [vj}
FCfonvard(S' u[(}, v;)})

Figure 1: FC algorithm

FC (sce Figure 1) computes a sequence of viable VAS's and corresponding sequence of domain assignments
maintaining the following property:

Property (FC invariant).

Let So = 0 e S¡ c ... e S k be the sequence of VAS's computed by FC when extending So to S k and let
Oo, 01, ... , O k be domain assignmcnts such that for all j E X, 8¡ (j) = Cíi (S¡). For all i = 1, ... , k -l the
following holds:

1. S¡ is viable. S k is consistent.
2. O¡ is ma:'\imal S¡-consistent.
3. o¡_1 ~ o¡

FC thus computes consistent viable VAS's by maintaining maximal S -consistent domain assignments. This extra
reduction of domains is both simple and vcry effcctive (Nadel[85]). In an efficient implementation ofFC, keeping all

sets O"j (S'J for every S can be avoidcd by a judicious choice of data structures but wc do not consider these details
here. In FC computeSupports insures maximal S -consistency of domain assignments (we assume Cí(0) = 80).

This is a costly operation. It takcs O(d) time for d the size of a variable domain. compweSupports is invoked for

each constro.int involving thc last variable instanciated in the currcnt VAS. This gives an O(ed) computation,
where e =1 Cl. It turns out that the necessary information provided by this computation (i.e. the viability of a VAS)

co.n be obtained more efficiently with dclaycd cxploration of the above mentioned sets. This optimization is in the
spirit of tho.t proposcd by Bessiere[94a] for are consistency computations.

3. First Found Forward Checking (F3C).

Thc new algorithm is based on thc notion of delayed-evaluation structure (DES) which is esscntially a stream in the

sense of Abelson[85]. A DES can be seen as a sequcncc having an explicit rcpresentation of its first element andan
99

implicit representation of the other elements (it can thus be infinite). DES's are quite convenient to efficiently
represent large data structures. We considera DES as a data type with two operations: first:DES --7 element,
returns the frrst element of a DES. This operation is assumed to take constant time. move:DES --7 DES retums
the DES resulting after discarding its first element. We use a DES to represent domain assignments. The key idea is
to remark that the three properties of FC (see above) can be maintained without explicitly computing domain

assignments. We only keep carefully chosen witnesses of each O(j).

Definition (Witness set)
A witness set of a domain assignmen! O is a function al: X~ D u {.l} (where ..Le D) such that for al!
j E dom(O) either w5 (j) E S(j) or w (J) =..L. We extend the notion of S -consistency to witness sets. Given a
VAS S, a witness set of an S -consistent domain assignment Os, written mff, is such that wff (i) == S(i), for

i E dom(S).

Given an ordering relation ::;X on X, a witness set can be expressed as a tuple (wf(i1), •.• ,wf(in)) where
ik-J ::;x ik> 1 <k:::; n. We also assume an ordering relation, '5:D, on Du (.l} such that for all dE D, ..L :::;D d,
and we order witness tu pies lexicographically in the obvious way. For an S -consistent domain assignment Os , a
use fu! S -consistent witness set of Os is roff (j) == fir st(8 s (j)), where first denotes the ·first element of each set
in the domain assignment (we define first(0) = ..L). Given a V AS S, F3C uses wff both to assert the viability of
S and to provide a delayed representation of Os. As elements of Os are expanded they are inserted in a separate
structure a{ S). The following properties establish how this is done (when no confusion arises we drop superscripts

for witness sets).

Proposition (F3C invariant)
Let So c. .. Sk eS be the sequence of consistent VAS's and let Ws0 , ... ,Wsk and cr(So), ... ,cr(Sk) be
corresponding witness tu pies and support sets computed by F3C in extending So to S. Let
Os0 ¿ Os1 ¿ ... :::> Os k be domain assignments such that Os¡ is maximal Srconsistent. The following holds:

1. cr(S¡) e o S¡
2. ms. is a wimess set (tuple) of cr(S¡) and ms. :::::: ms ..

¡ ¡-1 ¡

3. '\lj E X: ms, (j) == max[o) S;)]> .l, where max[A] denotes the maximum element of set A in the pre-defined

ordering (we define max(0] == .l).
4. If dE Os (j) is such that de crj (S¡) 1\ d < Ws. (j) then either every extension S' of S¡ such that

S' (j) = d \s not viable or else it has been output as ~ solution.

5. S(k + 1) = first(crk+l (S k)) is a support of S.

Property 1 says that F3C maintains witnesses of the viabílity of computed V AS's. Properties 2 and 3 assert that
witness sets act as lexicographically moved markers of thc known portion of delayed-evaluated consistent domain
assignments. Property 4 guarantees that no viable element less than a witness is misscd by an explicit part of a
domain assignment. Property 5 asserts that extensions are consisten t. '

As mentioned abo ve, domain assígnments are represented ']azily". Og is the initial DES. Given a V AS S, the S
consistent domain assígnment is represcnted by an explicit and an implicit part. The explícit part cr(S) contains
elements of 00 airead y known to be S -consistent. The implicit part Os ~ 80 is a DES of cmrcntly untested
potential supports for S. Both structures are related by 8 s (j) == 0 v successorf'ZJ (Ws (j)) == first(8 s (j)), where
successorf (x) is the clement of o(J) following X in the domain ordering. Procedure nextSupport (see figure 3)
updates these structures when a viable V AS S is extended (F3CF orward) or when non viabílity has been proved
anda different extension of an S' e S V AS must be tried (F3CBack), thus checking viability of consistent

extensions. The following specifícation captures this bchaviour of nextSupport more precisely.

100

Proposition (nextSupport postcondition)

Let a ·(S), ws(J), 8s(J) be the input and aj(S), w's(J), 8's(j) the computed structures in an ínvocation of
nex:iuppoft. Let So c. .. Si c. .. S be the sequence of extensions leading to S. The following properties hold:

l. For all Si, m's1 (j) = last(aj (S¡)). ·
2. Por all S; e S, the set {vE a) (S;)1 m5, (j) :s; v < m's1 (j)} is not a support for S.
3. If there is no v > first(a/S)) in 80 (j) su eh that v ís support for S then a} (S)= 0.
4. Either a¡(S)*0 and then aj(S)=a¡(S)-{first(CY¡(S))), or a¡(S)=0 and then we have

{vl.first(os(j))<v<first(o,S(j))/\vissupportofS}=0, m's(j) is the first support of S in os(}), and

aj(S) = { ._)5 ())}.

F 3Cforward(S)
1 ifiSI=nthenoutput(S) /*Sisasolution */
2 F 3Cback(S)
3 use repeat forjE I(S) such that R(k,j) E C
4 m5 (J),a¡(S) f-- nextSupport(S,j)
s until m s (j) = l_
6 if3j E I(S) such that m5 (j) = l_ then F 3Cback(S)
7 else j f-- first(I(S))
s F3Cforward(S u ((j,.first(CY/S)))})
F3Cback(S)
1 if S = 0 then done()
2 el se (j, v ¡) f-- last(S)
3 S'f--S-{(j,v1)}
4 ms, (j), CY¡(S') f-- nextSupport(S',j)
5 if ms,(i) = l_ then F 3Cback(S')
6 else F 3Cforward(S' u {(j,first(a¡ (S')))})

Figure 2. F3C algorithm

nextSupport(j, S): returns m(j), a¡
v f-- moveToNext(a1(S))
found f-- false
while v * l_ 1\ -,found do

isSupport f-- true .
for (i,x) E S, i =Oto ISI-1 while isSupport do

ifv > msi (j) then if (x, v) E R(i,j)
then a 1(S¡) f-- a¡(S;) u {v}

ms (j) f-- v
else isSupport f-- false

else skip
ifisSupport then found f-- true else v f-- moveToNext(a¡(S))

return (CY¡(S),m 5 (j)))

Figure 3. Procedure nextSupport

moveToNext(a¡ (S)): returns v
v f-- first(CY¡(S))
ifv = l_ then v f-- first(osCJ))

if v * l_ then os(}) f-- move(os (j))
else O'¡(S) f-- CY¡(S)- {v}

return (v)

Figure -+. Procedure moveToNext.

101

Procedure moveToNext (see figure 4) performs a move operation on the DES representing the appropriate domain

assignment, when this is needed.

We di~cuss next sorne properties supporting the correctness of F3C. We only sketch proofs. We saya VAS S is
considered in step 1 of F3Cforward or step 4 of F3Cback (see Figure 2). A V AS S' e S is said visited . By
the properties mentioned before, a visited V AS is viable anda considered V AS is consistent.

Lemma l.
Let So c ... c S k be a sequence of VAS's such that S k is the currently considered VAS. If O"k+1 (S k) 'i= 0 then
Sk is viable, has been visited, and the extension S" u {(k+ l,first(aú1 (S~c)))} has been considered.

proof: Only an invocation of nextSupport(k+l,S~c) can add values to ak+I(S"). This cannot have been in the
current invocation of F3Cjorward or F3Cback since Sk is currently considered, so there must has been a
previous consideration of S k. Only F3Cback reconsiders V AS's, so step 4 of F3Cback is being performed.

But then S" =S- {(k+ l,first(a"+I (S~c)))}, S is consistent and S k is viable 0.

Lemma 2.
If S is visited by F3C then all consistent direct extensions are considered.
proof: Let So c ... Sk-1 e S be the extensions computed by F3C such that Sk-1 is viable (visited), S is
consistent and not visíted by F3C. There are three reasons for not considering S:
l. v = S(k)is nota support for Sk_1. But then S cannot be consistent.
2. Extension (k,v)ES is a support but v<first(O"k(Sk-1)). Since vis a support, the only reason

v é O"k(Sk-1) is that nextSupport(k.Sk-1) moved passed it. But then O"k(Sk-l) :;é 0 and by lemma 1
extension Sk-I U {(k, v)} =S would have been considered before, contradicting the assurnption.

3. Extension (k, v) E S is a support but v >ros (k). F3C can only termínate in a recursive invocation of
l-1

F3Cbacksince F3Cforward never changes a VAS before invokíng F3Cback and the empty V AS is viable
by definition. Since S"_1 is visited, a call F3Cback(Sk-I) from F3Cback must be performed. But this can
only happen when nextSupport(k,S"_1) returns ms (k)= l., which means that Os (k) is the empty DES.

k-1 k-l
But then, by the property linking a DES and its explicit part, nextSupport must have moved passed every
support for Sk-1 in Osk_1 (k). By lemma 1, S would have been considered, which is a contradiction O.

Corollary.
F3C visits all (and only) viable VAS's.
proof: follows from the lemmas abo ve.

Theorem l.
F3C finds all (and only) solutions.
proof: (::::;.) Let S be a solution. Then S is a consistent extension of an S', which must be viable. By lemma I,

S is considered. Since jSj = n, it is output as a solution by F3Cforn·ard. (~) Let S be a V AS output by
F3Cjorn·ard. Let So c ... Sk-I e S be the extensions Ieading to S. Then 1 SI= n, by the corollary Sk_1 is
viable and by lemma 1 S is consistent. Thus S is a solution O.

4. Efficiency of F3C.

The characterization proposed in Kondrak[94] considers VAS's as nodes in a tree. This tree represents the search
space of a backtrack algorithm. Using as metrics the number of tree nodes (i.e. V AS's) visited and the number of
constraínts checked on each visit, Kondrak[94] is able to define a precise hierarchy for the efficiency of several
backtrack search algorithms: Chronological Backtrack (BT), backjumping (BJ), back marking (BM), cont1ict-directed
back jumping (CBJ), forward checking (FC), really fulllook-ahead (RFL) and sorne hybrids (e.g. Backmarking +
Backjumping, BMJ). Given algorithms P and Q, P appears below Q (i.e. it is bettcr) in the hierarchy if Q visits
all V AS's that P visits and P pcrforms less constraint checks than Q in each visitcd V AS. F3C can be placed
below FC in this hierarchy. In Kondrak[94] it is shown th.at FC visits a node (considers a VAS) iff its father (the
V AS it is an extcnsion of) is consistent with all the variables (is viable). The next theorem follows immediately.
102

Theorem 2.
FC considers ap VAS's that F3C considers.

Theorem 3.
FC performs on each considered V AS at least as much constraint checks as F3C does.
proof: Let So c. .. Sk-1 e S be the sequence of extensions computed by F3C, with Sk-l viable and S being
considered. Let (v, w) ~ R(i,j) , i ~ k < j ~ n be a constraint checked in an invocation of nextSupport(j, S).
Constraint R(i,i) is checked only once in a given invocation since w is eliminated from ai (S¡) If i =k,. then
w E Os(}), ' potential support of V, is being tested. Since FC tests all potential supports in (the explicit set)
8s(j), it must have c';ecke~ R(i,i)· If i <k a potential support of a previou~ly considered VAS Si is tested. We
must also ha ve w > (J) s. U), so (v, w) cannot ha ve been checked befo re m the current sequence of extensíons

1
leading to S. Also, since nextSupport considers constraints in the underlying variable ordering, w must be a
supportfor all Si e S¡. This mcns w would be a candidate for FC's ai (S¡) if FC considered S¡. By theorern 2,
this must be the case. But then FC must have also checked constraint R(i,i)• which proves the theorern. We rnay
furthernoticethatFCwouldhavealways checked (v,w), while in F3C this only happens if w> Ws.(J). Thus

F3C rnight perform less constraint checks than FC O . 1

Figure 5 shows F3C in the hierarchy of Kondrak[94]. RFL was added to this hierarchy in Valencia[95]. Dashed lines
express our conjecture regarding F3C+CBJ.

In our experiments we have found that the performance of F3C is quite stable, scoring consistently better than the
other algorithms in most of our tests. We tested F3C on two bench mark problems and on a set of randomly
generated problerns. As benchmarks we used the puzzle problem ZEBRA anda combinatoria! theory problem (CfP),
both described in Vanhent[89]. For the randomly generated problems a set of parameters are defined to control
different aspects of the constraint graph (Sabin[94], Bessiere[93]). O~ pe~ 1 denotes the probability of having a
constraint between a pair of variables, O ~ pu ~ 1 is the probability that sorne constraint hold between a given pair of

values, d is the domain size and n is the nurriber of variables.

IJT FC ~Fl BT

H~ 1\ l fiJ FC-tCBJ F3C
1 ,

/H~
1 1

~
1 t
' ~

: 1
1 •
1/

BMJ2 CBJ nc~caJ F3C-FC CBJ

&~ ~
CBJ•BI12.

~FL

Figure 5. Algorithm hierarchy based on constraint checks (left) and considered V AS's (right) .

For our experiments we used an implementation of F3C with an explicit representation of 8s (i.e. no DES's)
anda matrix of markers pointing to witnesses of each 85 (}). We also avoided creating copies of domains by
maintaining explicitly the set of delcted (i.e. non supports) values in each domain and used it to reinstall them as

103

needed on backtracking. Results are shown in tables 1-3. We analyzed FC and F3C, both using the min-domains
heuristic, i.e. the variable having the smallest current domain is the one selected next for extension. Results of these
tests are given in tables 4 and 5.

ALGORITHM Constraint Numberof
Checks VAS's

considered
CBJ 939 127
F3C 1037 144
BMJ 1227 267
FC 1329 144
BJ 2066 267
BT 2530 339

Table l. Constraint checks and V AS's considered for the problem ZEBRA .

ALGORITHM Constraint Checks Number of V AS 's
considered

F3C 124858 8626
BMJ 127015 14582
FC 164557 8626
CBJ 620824 14487
BJ 624377 14582
BT 6668616 15733

Table 2. Constraint checks and V AS's considered, for CTP

Pu FC F3C CBJ BJ BMJ BT
5 30 28 50 583 583 708

10 48 36 272 351 264 771
15 65 46 48 52 47 52
20 131 97 195 267 188 967
25 103 67 232 311 242 2420
30 228 150 482 565 271 1245
35 284 188 293 1401 359 4608
40 991 604 3788 10548 3590 24960
45 860 515 3808 8230 3653 11757
50 2093 1418 4722 13477 4195 27158
55 3211 2169 15481 32635 5972 176578
60 8461 5667 36540 132939 29623 544724
65 15067 9573 38846 133502 26479 345203
70 503 357 620 2396 577 10542
75 808 716 557 6277 712 15108
80 190 106 436 436 209 1071

Total 33073 21737 106370 343970 76964 1167872
Table 3. Random problems with pe = 30%, n = 20, d = 5 and O. 05 ~ pu ~O. 8.

Pu FqMindom) F3 C (1vlindom ¿ FC/F3C
5 3849 2050 0.53

10 6068.7 3386 0.56
15 10696.13 4912.5 0.46
20 15804.4 7498.6 0.47
25 35814.7 17536.2 0.49
30 44856.9 25409.8 0.57
35 103653 67919.1 0.66
40 194373.5 119939.5 0.62

104

45 1478361.3 1147081.6 0.78
50 3297041 3235978.3 0.98
55 13085 2658 0.20
60 3973.1 1627.2 0.41
65 1446.2 876.6 0.61

70 1590 530.6 0.33
75 1658.8 350 0.21

80 1851 385 0.21

85 2015.6 156 0.08
90 2526 160 0.06
95 2495.6 121.8 0.05

100 2940 98 0.03

Total 5224099.93 4638674.8

Table 4. Constraint checks for FC and F3C with min-domain heuristícs. Parameters are: n = 20 , d = 30,
pe= 0.5.

It can be seen in the tab1es that F3C outperforms FC both with or without the min-domaíns heuristics. An increase
of about 12% in the first case and 25% in the second is observed. If we ignore the instances laying just at the border
between under-constraint and over- constraint problems (pu "" O. 5), the performance in crease with min-domains is

about40%.

5. F3C in a musical cornposition systern.

F3C has been used to improve the constraint engine of a visual environment for computer aided musical
compositíon, called Niobé (Assayag[93]). The musical domain is particularly demanding for constraint satisfaction
techniques: The number of variables and the domaín size tend to be very large (e.g. a variable might denote a chord in
a sectíon of a piece), progressions from under-constraint to over-constraint subsequences might be precisely what the
composer looks for and constraints are usually considered to have different degrees of importance. Niobé applies
different constraint satisfactíon techniques. Solution searching used originally FC with an embedded technique for
handling soft constraínts (Schiex[92]). Delayed evaluation is extensively used in Niobé : Domaíns are represented
implicitly, and all pruning is performed "lazily". In fact, the lazily evaluated A C -5 in Niobé can be
straíghtforwardly adapted to behave as AC-6 (Bessiere[94]).

6. Conclusions.

We presented F3C, a new backtrack search algorithm based on the notion ofjirst support defincd in Bessiere[94] for
are consistency computatíon. We described the key properties of FC and argued how they can be maintained more
efficiently by keeping only a witness from each domain. We showed how this concept can be formally adapted to FC
by representing domains as streams and considering delayed constraint filtering. This characterization allowed us to
place F3C in the hierarchy proposed in Kondrak[94] and thus to prove the improvement of F3C over FC. In our
experiments the improvement over FC was clearly demonstrated in terms of a smaller number of constraint checks,
both with or without the min-domains heuristics. Comparison of F3C (without min-domains) with several other
well known backtrack search algorithms shows that F3C consistently ranks first in most cases. We described a
system for music compositíon in which the idea of delayed evaluation is profitably used in severa! aspects of the
underlying constraínt reasoning engine.

7. References

Abelson[85]

Assayag[93]

Bcssiere[94a]

Abelson, H., Sussman, G. J. Structure and Jnterpretation of Computer Programs. MIT
PRESS, 1985.
Assayag, G., Rueda, C. The Music representation Project at IRCAM. Proc. icmc 93.
Tokyo, Japan, 1993.
Bessiere, C., Regin, J. C. \lSing Bidcrectíonality to Speed up Are Consistency Processing.
Proc. ECAI'94.

105

Bitner[75]

Deville[91]

Haralick[80]

Kondrak [94]

Mackworth[77]

Mohr[86]

Nadel[89]

Sabin[94]

Schiex[92]

Valencia[95]

Vanhent[89]

106

Bitner, J. R., Reingold, E. Backtrack Programming techniques. Comm. ACM,
18(1975)651-656.

Deville, Y., Van Hentenryck, P. An Efficient Arc-Consistency Algorithm for a Class of
CSP Problems. Proc. UCAI'91.

Haralick, R. M. Increasing Tree Search Efficiency for Constraint Satisfaction Problems.
Jnformation Sciences 14 (1978) 263-314.

A Theoretical Evaluation of Selected Backtracking Algorithms. TR94-10, University of
Alberta, June 1994.

Mackworth, A. K. Consistency in Networks of Relations. Artificial Jntelligence 28
(1986) 128-233.

Mohr, R., Henderson, T. C. Are and Path Consistency Revisited . .Artificial /ntelligence
28 (1986) 128-233.

Nade!, B. Constraint Satisfaction Algorithms. Computation Intelligence 5 (1989) 188-
224.

Sabin, D., Freuder, E. Contradicting Conventional Wisdom in Constraint Satisfaction.
Proc. ECA/'94.

Schiex, T. Possibilistic Constraint Satisfaction Problems or "How to handle soft
constraint?". Personal communication, París, 1992.

Valencia, F., Castaño, G. Problemas de satisfacción de Restricciones: Unificación Formal
y Nuevos Algoritmos. AV-95-03, Grupo AVISPA, Universidad Javeriana de Cali, 1995.

Van Hentenryck, P. Constraint satisfaction in Logic programmiñg. MIT PRESS, 1989.

