Improving Forward Checking with Delayed
Evaluations

Camilo Rueda and Frank D. Valencia
Grupo AVISPA,

Universidad Javeriana de Cali
Research Team AVISPA
Pontificia Universidad Javeriana Cali
Calle 18 Num. 118-250 Via a Pance
Cali, Colombia
Phone:(57) 2-5552175
Fax:(570 2-5552823
[crueda,fvalencij@atlas.univalle.edu.co

Abstract

Several algorithms for solving constraint satisfaction problems (CSP) have been proposed in recent
vears. One of the most successful approaches involves using arc consistency as a pre-processing step
followed by a form of backirack search called forward checking (FC). Efficient algorithms for arc
consistency based on the notion of first support have been proposed recently. We consider here this
notion 1o be a namral consequence of delayed evaluation of constraint checks and apply it to FC. We
present a specific algorithm, first-found-forward-checking (F3C), which takes advantage of = dejayed
evaluation of constraints. We prove that F3C can be no worst than FC, and show substantial reductions
of constraint checks in practice. F3C has been effectively used to solve complex CSP's in a music

composition system.

Keywords: constraints, constraint reasoning techniques, arc consistency, backtrack search, lazy evaluation.

1. Introduction

The use of simple forms of constraint reasoning has proved to be very effective in most practical applications. These
techniques amount to a pre-processing siep using arc consistency schemes (Mackworth{77]) to reduce variable
domains followed by a form of back track search called forward checking (Haralick[80]). The standard formalism in
constraint-based reasoning is a constraint graph defined by a set of variables (the nodes), a domain of values for each
variable, and a set of constraints between the variables (the arcs). Efficient arc consistency algorithms (Mohr[§6]) rest
on the idea of computing for each value of a variable domain a set of supporting values. Supporiing values are
witnesses that constraints between variables hold. In Bessiere[94a,b] improvements in the time and space complexity
of previous arc consistency algorithms are shown to be obtained by computing the set of supports incrementally.
With a judicious choice of data structures it can be efficiently guaranteed that a particular element of the set of
supports is generated only when it is really needed. The principle involved in this strategy, called delayed evaluation,
makes part of the standard trade of functional programming (Abelson[85]). We use it to improve the standard forward

checking (FC) algorithm.

FC attempts to reduce backtrack search by eliminating from the domain of some variables those values that are
inconsistent with those already chosen for the other variables. It turns out that this process can also be seen as a set
of supports computation in such a way that the idea of incrementallity applies. In fact, delayed evaluation of data
structures can be profitably employed in several aspects of constraint reasoning for improving the time and/or space
complexity of search algorithms.

Kondrak[94] proposes a characterization allowing to define theoretically an ordering of FC and various others
backtracking algorithms according to their efficiency. We propose in this paper F3C (first found forward checking), a
modification of FC with the incremental computation of supports and show that it ranks better than FC in that
characterization.

$ This work has been partially supported by grant 12-51-14-041-95 from Colciencias-BID 97

follows. Section 2 contains some preliminary definitions and properties on constraints
bes F3C, section 4 proves the improvement over FC and gives experimental results,
and delayed evaluation in a system for computer aided composition. and section 6

The paper is organized as
networks. Section 3 descri
section 5 discusses the use of F3C
contains conclusions.

2. Background

A constraint network (CN) is a triple <V, D,C > where V = {x,,x,,...,x,} is a set of variables, D is a set of
values (the domain) and C is a set of constraints. We assume variables are identified by indexes in a set X where
index ie X identifies variable x; € V. A given CN =< X,D,C > is assumed throughout the paper. A domain
assignment is a function &§:X —P(D). 8(i) denotes the domain of values for variable X;. Given
assignments 51,52, we say 51 c 52 when for all i € X, §,(i) < 6,(i). Constrainis are subsets of the products of
their domains (that is, R, i) < 5(i))%...x8(i,)). We say that values V; & §(i1),q..,vl-u € 6(iy), satisfy
constraint R ; ., when (Viysees Vi Y E Ry y..iy- Given a domain assignment &, a value assignment set (VAS)
is a function S:/ — X — D such that S(i)e 8(i). A VAS represents the instanciation of variables with values in
their corresponding domains. A VAS S is consistent if for each constraint involving variables instanciated by S
the corresponding assignments satisfy the constraint. A solution of a CN is a consistent VAS instanciating all

variables.

A constraint network is binary when all its constraints are binary relations. A binary network < V,D,C> is
usually represented as a directed graph CG =< N,E > with N=V and (x;,%;)€ E iff R;eC. Arc
consistency techniques are mostly used in binary constraint networks. The notion of support is fundamental in these
techniques Mohr[86]). Given a domain assignment &, for each constraint R; ; we say that value z € 6(j) isa
support for value v € 8(i) if (v,2) € Ry ;. A value V; is viable if for every je X such that R; ,€C, V; has
support in §(j). (i) is viable when all of its elements are viable. A domain D in a network is arc consistent
when for all ie X , &(i) is viable.

Extending the notion of support to a VAS will allow us to neatly characterize backtrack search algorithms. We
consider only binary networks to simplify notation, but the definitions can easily be extended to n-ary constrainis.
Having a constraint R, ;, € C and given a VAS S such that j & dom(S) and a pair (i,v;)€ S, Vv, is a support
for § if (vl-,vj) € R jy- Aset A is a support for S if each element of A is a support for 5.

Definition (viability and S-consistency).

A VAS S is viechle in a domain assignment$ if for each i € dom(S) and for all variables | € X such that
j&dom(S)and R, ;, €C, S hasasupportin 5(j). We assume VAS J is viable. A domain assignment 0 is
S-consistent if forall j& X , O(j) isa support for 5. A domain assignment O is maximal S-consistent if it is
S_consistent and for all S-consistent 87, 8’ < & .Given a viable VAS S such that j & dom(S) and v € o(j)
a support for S, the VAS §"=S W {(ﬁj.vj)} is called an extension of S in 0.

Several backtrack search algorithms, including FC, work by extending consistent viable VAS's. Extending a VAS
opens up at least three choice possibilities (we assume a given 0):
1. An element must be chosen from the set of candidate variables indexes (S)={je&dom(S)jeX].
2. A support in the domain of the chosen variable must be selccted from the set
o .(S)={ved(jlv isasupport [or §}.
3. W/hen no extension is possible (i.e. S is not viable), a previously extended VAS S§” < S must be
reconsidered.

Different backtrack search algorithms can be identified by the way in which they handle these sets. Chronological
backtracking (BT, Bitner[75]) assumes predelined static orderings both on variables and on domains. The candidates
chosen in I(5) and in 0 (S) are the first elements according to their respective orderings. Similarly, when S is
98

not viable, a backtrack VAS S =8 -{(j,v;)} is selected, where X j is the last variable in the ordering among
those instanciated by S. Forward Checking performs essentially the same choices as BT does. The difference lies in
that FC computes for a given VAS § all sets O'J‘(S), for every j € I(S). This allows to find out earlier whether
S is viable or not and, additionally, reduces the sets of values to inspect for supports in subsequent extensions of S.

FCforward(S)
if 1S1=n then owrput(S) /*S is a solution */
FCback(§)

else repeat for j € I(S) such that Ry y € C
0;(S) ¢ computeSupports(S, o;(S"))
until 0, (8)=2
if 3j € I(S) such that ;(S) = D then FCback(S)
else j « first(1(S))
v; « first(c;(S))
G;(S) — O'j(S)_ {Vj}
FCforward(Sw ((j,v;)})
FChack(S)
if S =@ then return()
else (j,v;) « last(S)
5 S~ {(j,v,)
if 0,(S") = then FCback(S")
else v/ « firsi(c;(8))
0;(8) e« 0,;(S)-{vj}
FCforward(S"w{(j,v)})

Figure 1: FC algorithm

FC (sce Figure 1) computes a sequence of viable VAS's and corresponding sequence of dorain assignments
maintaining the following property:

Property (FC invariant).

Let Sp =D <5 C...C 8 be the sequence of VAS's computed by FC when extending S to Sy and let
99,01....,0; be domain assignments such that for all jeX, 5:()=0;(S;). For all i=1,...,k—1 the
following holds:

.S is viable. S is consistent.

.6; is maximal S;-consistent.

6;-12 6

L B

FC thus computes consistent viable VAS's by maintaining maximal S-consistent domain assignments. This exira
reduction of domains is both simple and very effective (Nadel[85]). In an efficient implementation of FC, keeping all
sets 07(S) forevery S can be avoided by a judicious choice of data structures but we do not consider these details
here. In FC. computeSupports insures maximal S-consistency of domain assignments (we assume o(Z) = 0).
This is a costly operation. It takes O(d) time for d the size of a variable domain. computeSupports is invoked for
each constraint involving the last variable instanciated in the current VAS. This gives an O(ed) computation,
where ¢ =/Cl. It turns out that the necessary information provided by this computation (i.e. the viability of a VAS)
can be obtined more efficiently with delaved exploration of the above mentioned sets. This optimization is in the
spirit of that proposed by Bessiere[94a] for arc consistency computations.

3. First Found Forward Checking (F3C).

The new algorithm is based on the notion of delayed-evaluation structure (DES) which is essentially a stream in the

sense of Abelson[85]. A DES can be scen as a sequence having an explicit representation of its first element and an
99

implicit representation of the other elements (it can thus be infinite). DES's are quite convenient to efficiently
represent large data structures. We consider a DES as a data type with two operations: first: DES — element,
returns the first element of a DES. This operation is assumed to take constant time. move: DES — DES returns
the DES resulting after discarding its first element. We use a DES to represent domain assignments. The key idea is
to remark that the three properties of FC (see above) can be maintained without explicitly computing domain
assignments. We only keep carefully chosen witnesses of each o(J).

Definition (Wiiness set)
A witness ser of a domain assignment. O is a function w5:X—>Du{J_} (where L & D) such that for all

J € dom() either w%(j)e () or w?(j)= L. We extend the notion of S-consistency to witness sets. Given a
VAS S, a witess set of an S-consistent domain assignment 55, written a)g, is such that a)g(z')zS(i), for

i edom(S).

Given an ordering relation <y on X, a witness set can be expressed as a tuple (a}g(z’,)“.e,wg(iﬂ)) where
i,_; S4By, 1<k < n. We also assume an ordering relation, <p, on Du {1} such that for all deD, 1L <pd,
and we order witness tuples lexicographically in the obvious way. For an S-consistent domain assignment & S, a
useful S-consistent witness set of 8¢ is @§ (j) = first(85(j)), where firstdenotes thefirst element of each set
in the domain assignment (we define firsi(&J) = L). Givena VAS §, F3C uses @? both to assert the viability of
S and to provide a delayed representation of 15} 5. As elements of 0 g are expanded they are inserted in a separate

structure 0(S) . The following properties establish how this is done (when no confusion arises we drop superscripts

for witness sets).

Proposition (F3C invariant)

Let Sy <...Sp ©§ be the sequence of consistent VAS's and let ag ,...,@5 and 0(Sg),...,0(S;) be
corresponding witness tuples and support sets computed by F3C in extending So to S. Let
550 - 531 0.2 55/« be domain assignments such that §g, is maximal S;-consistent. The following holds:

1.0(S;) < 6,

2. @g, is a witness set (tuple) of o(S5;) and wg, | 2 g, -

3. Vje X (j)=max[o; (51> L, where max[A] denotes the maximum element of set A in the pre-defined
ordering (we define max[@]= L).

4.1t de b (jris such that d & oF ($;) ~nd < wg, (j) then either every extension S’ of §; such that
S’(j)=d 'is not viable or else it has been output as a solution.

5. S(k+1)= first(o4+1(Sx)) is a support of .

Property 1 says that F3C maintains witnesses of the viability of computed VAS's. Properties 2 and 3 assert that

witness sets act as lexicographically moved markers of the known portion of delayed-evaluated consistent domain

assignments. Property 4 guarantees that no viable element less than a witness is missed by an explicit part of a

domain assignment. Property 5 asserts that extensions arc consistent. :

As mentioned above, domain assignments are represented "lazily”. 5@ is the initial DES. Given a VAS S, the S-
consistent domain assignment is represented by an explicit and an implicit part. The explicit part o(S) contains
elements of 5@ already known to be S-consistent. The implicit part dg < 8, is a DES of cuirently untested
potential supports for S. Both structures are related by 55(j)=@vsuccessorfz(cos(j))=ﬁrsz(65(j)), where
succeﬁorf (x) is the clement of &() following x in the domain ordering. Procedure nexaSupport (see figure 3)
updates these structures when a viable VAS S is extended (£ 3CForward) or when non viability has been proved
and a different extension of an S" C S VAS must be tried (F3CBack), thus checking viability of consistent
extensions. The following specification captures this behaviour of nextSupport more precisely.

100 '

Proposition (nextSupport posicondition)

Let 0;(S), wg(j), 65(j) be the input and O’}-(S), @5 (j),565(j) the computed structures in an invocation of

nextSupport. Let Sg C...S; C....S be the sequence of extensions leading to S. The following properties hold:

1. For all 5;, wj (j)=last(c}(S;)).

2.Forall §; c§,theset {ve o;(5)lawg (H<sv< a)fqi ()} is not a support for 5.

3. If there is no v > first(o;(S)) in 8y (j) such that v is support for S then O’;-(S) =,

4. Either o;(S5) #@ and then 0(5)=0;(5)- {first(o;(S))}, or 0;(§)=9 and then we have
Wl first(85(j)) < v < firsi(85(j)) Av is support of §} =@, wz(j) is the first support of S in 85(j), and

oS ={- N}

F3Cforward(S)
L if 151= n then output(S) /*S is a solution */
2 F3Cback(S)

Luse repeat for j € I(S) such that R ;y € C
ws(j),0;(8) « nextSuppori(S, j)
until wg(j) =L
if 3j € 1(S) such thar wg(j)= L then F3Cback(S)
else j « first(1(5))
F3Cforward(S U ((J, first(o;(S)ND)
F3Cback(S)
1if S = D then done()
2 else (j,v;) « lasi(S)
s S S=((y))
4 g (j),0;(5) « nextSupport(S’, j)
5 if wg(j)= L then F3Cback(S")
6 else F3Cforward(S" W ((J, firsi(o; EHNH

Figure 2. F3C algorithm

[I T~ NI W N

nextSupport(j,S):returns w(j), 0;
v <= moveToNext (o ;(S))
found « false
while v # 1L A —=found do
isSupport « irue
for (i,x)e S, i =0 to|SI-1 while isSupport do
if v>aws ()) then if (x, v)ER;
then G‘/(‘i) «— G/(S‘>) {V}
ws (j) v
else isSupport « false
else skip
if isSupport then found «— irue else v < moveToNext(o;(S))

return (G (S), @5())))

Figure 3. Procedure nextSupport

moveToNext(o;(S)):returns v
v & first(c;(S))
ifv=_Lthen v« first(55()))
ifv# Lthen 85(j) &« move(d5(J))
else 0;(§) «— 0,;(5) - v}
return (v)

Figure 4. Procedure moveToNext.

101

Procedure moveToNexi (see figure 4) performs a move operation on the DES representing the appropriate domain
assignment, when this is needed.

We discuss next some properties supporting the correctness of F3C. We only sketch proofs. We say a VAS S is
considered in step 1 of F3Cforward or step 4 of F3Cback (see Figure 2). A VAS S < § is said visited . By
the properties mentioned before, a visited VAS is viable and a considered VAS is consistent.

Lemma 1.
Let Sg C...C Sy, be a sequence of VAS's such that Sy, is the currently considered VAS. If 0j,1(S) # & then

Sk is viable, has been visited, and the extension S, L {(k + 1, firsi(o),; (S,)} has been considered.

proof : Only an invocation of nextSuppori(k+ 1,S,) can add values to &,,,;(S,). This cannot have been in the
current invocation of F3Cforward or F3Cback since Sj, is currently considered, so there must has been a
previous conszderatlon of Sg. Only F3Cback reconsiders VAS's, so step 4 of F3Cback is being performed.
But then S, =S — {(k+ 1, first(c,.,,(S,)))}, S is consistent and S, is viable .

Lemma 2.

If S is visited by F3C then all consistent direct extensions are considered.

proof : Let So ...5p_1 © S be the extensions computed by F3C such that S;_; is viable (visited), S is

consistent and not visited by F3C. There are three reasons for not considering S

1. v=5(k)is not a support for Sj_;. But then S cannot be consistent.

2. Extension (k,v)e S is a support but v < first(0,(S,_1)). Since v is a support, the only reason
ve 0y (Sp_1) is that nextSupport(k,S;_1) moved passed it. But then 0} (S;_1) #J and by lemma 1
extension Sy_1 W {(k,v)} =5 would have been considered before, contradicting the assumption.

3. Extension (k,v) €S is a support but v> @, (k). F3C can only terminate in a recursive invocation of
F3Cbacksince F3Cforward never changes a VAS before invoking F3Cback and the empty VAS is viable
by definition. Since S,_; is visited, a call F3Cback(Sy_1) from F3Cback must be performed. But this can
only happen when nextSupport(k,S,_;) retums &g, (k)= L, which means that 55 (k) is the empty DES.
But then, by the property linking a DES and its exphcu part, nextSupport must have moved passed every
support for S;_j in 5Sk—1 (k). By lemma 1, S would have been considered, which is a contradiction

Corollary.
F3C visits all (and only) viable VAS's.
proof : follows from the lemmas above.

Theorem 1.

F3C finds all (and only) solutions.

proof : (=)Let S be a solution. Then S is a consistent extension of an S”, which must be viable. By lemma 1,
S is considered. Since |S|= n, it is output as a solution by F3Cforward. (<)Let S be a VAS output by
F3Cforward. Let Sg C...5;_1 € S be the extensions leading to S. Then |SI=n, by the corollary Sj_; is
viable and by lemma 1 S is consistent. Thus S is a solution O

4. Efficiency of F3C.

The characterization proposed in Kondrak[94] considers VAS's as nodes in a tree. This tree represents the search
space of a backtrack algorithm. Using as metrics the number of tree nodes (i.e. VAS's) visited and the number of
constraints checked on each visit, Kondrak[94] is able to define a precise hierarchy for the efficiency of several
backirack search algorithms: Chronological Backtrack (BT), back jumping (BJ), back marking (BM), conflict-directed
back jumping (CBJ), forward checking (FC), really full look-ahead (RFL) and some hybrids (e.g. Backmarking +
Backjumping, BMIJ). Given algorithms P and Q, P appears below @ (i.e. it is bettcr) in the hierarchy if Q visits
all VAS's that P visits and P performs less consiraint checks than Q in each visited VAS. F3C can be placed
below FC in this hierarchy. In Kondrak[94] it is shown that FC visits a node (considers a VAS) iff its father (the
VAS it is an extension of) is consistent with all the variables (is viable). The.next theorem follows immediately.

102

Theorem 2.
¥C considers all VAS's that F3C considers.

Theorem 3. '
FC performs on each considered VAS at least as much consiraint checks as F3C does.

proof : Let Sp C...Sp_1 © S be the sequence of extensions computed by F3C, with Sp_1 viable and
considered. Let (v,w)féf{"(;) PR k < j<n bvea constraint checked in an invocation of nexiSuppori{(j,5).
Consiraint ﬁ{i,) is checked only once in a given invocaiion since w is eliminated from O)i (S s
we 55 (/). - potential support of Vv, is being tested. Since FC tests all potential supports in (the expli
G¢(j), it must have checked Ry I i < k apotential support of a previously considered VAS 5; is tested. We
must also have w > ¢) 8“«2,%/) cannot have been checked before in the current sequence of exten
leading 1o §. Also, since nextSupport considers constraints in the underlying variable ordering, W must
support for all §; < S;. This me us w would be a candidate for FC's O (S;) if FC considered S;. By theorem 2,
this must be the case. But then FC must have also checked constraint R(i, e which proves the theorem. We may
farther notice that FC would have always checked (v,w) , while in F3C this only happens if w > Wg, (/). 7T
F3C might perform less constraint checks than FC 0. !

Figure 5 shows F3C in the hierarchy of Kondrak[94]. RFL was added to this hierarchy in Valencia{95]. Dashed lines
express our conjecture regarding F3C+CBJ.

Tn our experiments we have found that the performance of F3C is quite stable, scoring consistently better than the
other algorithms in most of our tests. We tested F3C on two bench mark problems and on a sei of randomly
generated problems. As benchmarks we used the puzzle problem ZEBRA and a combinatorial thecry problem (CTP),
boih described in Vanheni[89]. For the randomly generated problems a set of parameters are defined to control
different aspects of the constraint graph (Sabin[94], Bessiere[93]). 0 < pc £1 denotes the probability of having a
consiraint between a pair of variables, 0 < pu <1 is the probability that some constraint hold beiween a given pair of
values, d is the domain size and » is the numiber of variables.

BT

FE?CB.J;SC il

¢

/

9
+

'
1
1
! @
1
1
1
1

FICHCRY fe

CRI+BH2.

Figure 5. Algorithm hierarchy based on constraint checks (left) and considered VAS's (right) .

For our experiments we used an implementation of F3C with an explicit representation of 55 (i.e. no DES's)
and a mairix of markers pointing to witnesses of each 55 (j). We also avoided creating copies of domains by
maintaining explicitly the set of deleted (i.e. non supports) values in each domain and used it to reinstall them as

103

needed on backiracking. Results are shown in tables 1-3. We analyzed FC and F3C, both using the min-domains
heuristic, i.e. the variable having the smallest current domain is the one selected next for extension. Results of these

tests are given in tables 4 and 5.

ALGORITHM Constraint Number of
Checks VAS's

considered

CBJ 939 127
F3C 1037 144
BMJ 1227 267
FC 1329 144
BJ 2066 267
BT 2530 339

Table 1. Constraint checks and VAS's considered for the problem ZEBRA .

ALGORITHM Constraint Checks Number of VAS's
considered
F3C 124858 8626
BMJ 127015 14582
FC 164557 8626
CBJ 620824 14487
BJ 624377 14582
BT 6668616 15733
Table 2. Constraint checks and VAS's considered, for CTP
Pu FC F3C CBJ BJ BMJ BT
5 30 28 50 583 583 708
10 48 36 272 351 264 771
15 65 46 48 52 47 52
20 131 97 195 267 188 967
25 103 67 232 311 242 2420
30 228 150 482 565 271 1245
35 284 188 293 1401 359 4608
40 991 604 3788 10548 3590 24960
45 860 515 3808 8230 3653 11757
50 2093 1418 4722 13477 4195 27158
55 3211 2169 15481 32635 5972 176578
60 8461 5667 36540 132939 29623 544724
65 15067 9573 38846 133502 26479 345203
70 503 357 620 2396 577 10542
75 808 716 557 6277 712 15108
80 190 106 436 436 209 1071
Total 33073 21737 106370 343970 76964 1167372
Table 3. Random problems with pc =30%,n=20,d =5 and 0.05 < pu <0.8.
Pu FC(Mindom) F3C(Mindom) FC/F3C
5 3849 2050 0.53
10 6068.7 3386 0.56
15 10696.13 4912.5 0.46
20 15804 .4 7498.6 0.47
25 35814.7 17536.2 0.49
30 44856.9 25409.8 0.57
35 103653 67919.1 0.66
40 194373.5 119939.5 0.62

104

45 1478361.3 1147081.6 0.7¢

50 3297041 3235978.3 0.98
55 13085 2658 0.20
60 3973.1 1627.2 0.41
65 1446.2 876.6 0.61
70 1590 530.6 0.33
75 1658.8 350 0.21
80 1851 385 0.21
85 2015.6 156 0.08
90 2526 160 0.06
95 2495.6 121.8 0.05

- 100 2940 98 0.03

Total 5224099.93 4638674.8)

Table 4. Constraint checks for FC and F3C with min-domain heuristics. Parameters are: 7 = 20, d=730,
pc=0.5.

It can be seen in the tables that F3C outperforms FC both with or without the min-domains heuristics. An increase
of about 12% in the first case and 25% in the second is observed. If we ignore the instances laying just at the border
between under-constraint and over- constraint problems (pu = 0.5), the performance increase with min-domains is

about 40%.
5. F3C in a musical composition system.

F3C has been used to improve the constraint engine of a visual environment for computer aided musical
composition, called Niobé (Assayag[93]). The musical domain is particularly demanding for constraint satisfaction
techniques: The number of variables and the domain size tend to be very large (e.g. a variable might denote a chord in
a section of a piece), progressions from under-constraint to over-constraint subsequences might be precisely what the
composer locks for and constraints are usually considered to have different degrees of importance. Niobé applies
different constraint satisfaction techniques. Solution searching used originally FC with an embedded technique for
handling soft constraints (Schiex[92]). Delayed evaluation is extensively used in Niobé : Domains are represenied
implicitly, and all pruning is performed "lazily”. In fact, the lazily evaluated AC-5 in Niobé can be

straightforwardly adapted to behave as AC-6 (Bessiere[94]).

6. Conclusions.

We presented F3C, a new backtrack search algorithm based on the notion of first support defined in Bessiere[94] for
arc consistency computation. We described the key properties of FC and argued how they can be maintained more
efficiently by keeping only a witness from each domain. We showed how this concept can be formally adapted to FC
by representing domains as streams and considering delayed constraint filtering. This characterization allowed us to
place F3C in the hierarchy proposed in Kondrak[94] and thus to prove the improvement of F3C over FC. In our
experimenis the improvement over FC was clearly demonsirated in terms of a smaller number of constraint checks,
both with or without the min-domains heuristics. Comparison of F3C (without min-domains) with several other
well known backtrack search algorithms shows that F3C consistently ranks first in most cases. We described a
system for music composition in which the idea of delayed evaluation is profitably used in several aspects of the

underlying constraint reasoning engine.

7. References

Abelson[85] Abelson. H., Sussman, G. J. Structure and Interpretation of Computer Programs. MIT
PRESS. 1985.

Assayag[93] Assayag, G., Rueda, C. The Music representation Project at IRCAM. Proc. icmc 93.
Tokyo, Japan, 1993. .

Bessitre[94a] Bessiere, C., Regin, J. C. using Biderectionality to Speed up Arc Consistency Processing.

Proc. ECAI'94.
105

Bitner[75]
Deville[91]
Haralick[80]
Kondrak [94]
Mackworth{77]
Mohr[86]
Nadel[89]
Sabin[94]
Schiex[92]
Valencia[95]

Vanhent[89]

106

Bitner, J. R., Reingold, E. Backirack Programming techniques. Comm. ACM,
18(1975)651-656.

Deville, Y., Van Hentenryck, P. An Efficient Arc-Consistency Algorithm for a Class of
CSP Problems. Proc. ICAI91.

Haralick, R. M. Increasing Tree Search Efficiency for Constraint Satisfaction Problems.
Information Sciences 14 (1978) 263-314.

A Theoretical Evaluation of Selected Backtracking Algorithms. TR94-10, University of
Alberta, June 1994,

Mackworth, A. K. Consistency in Networks of Relations. Artificial Intelligence 28
(1986) 128-233.

Mohr, R., Henderson, T. C. Arc and Path Consistency Revisited. Artificial Intelligence
28 (1986) 128-233.

Nadel, B. Constraint Satisfaction Algorithms. Computation Intelligence 5 (1989) 188-
224,

Sabin, D., Freuder, E. Contradicting Conventional Wisdom in Constraint Satisfaction.
Proc. ECAI'94.

Schiex, T. Possibilistic Constraint Satisfaction Problems or “How to handle soft
constraint?”. Personal communication, Paris, 1992.

Valencia, F., Castafio, G. Problemas de satisfaccién de Restricciones: Unificacién Formal
y Nuevos Algoritmos. AV-95-03, Grupo AVISPA, Universidad Javeriana de Cali, 1995.

Van Hentenryck, P. Constraint satisfaction in Logic programming. MIT PRESS, 1989.

